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MANAGEMENT STRATEGIES IN FiXED-STRUCTURE MODELS

OF COMPLEX ORGANIZATIONS II

Alan E. Gelfand and Crayton C. Walker

l. Introductiocn

In this paper we examine consensus as a management
control strategy in complex organlizations. We consider
how different degrees of consensus may interact with two
other management strategies, namely, management by
exception and management by prilority, to influence the
tractablllty of organizations' behavior.

The background for this paper is found in a previous
publication [9]. 1In the earlier work we introduced the
interpretation of an organizational control system as a
network of binary switching elements. Each element has
a fixed number of inputs and computes a binary output
according to a function that represents its response to
input information. We interpret management by exception
as the extent to which the functilion has identical output
values, and management by priority as the extent to which
individual inputs are effective in producing identical

output. Our findings are that these two strategies can



control overall system behavior. We also focused on

the problem of providing modeled organizational behavilor
that 1s on the average within useful, empirically
reasonable ranges. Additionally we sought to provide
results useful to the organizatlonal designer or inter-
vener who must work in the face of uncertainty as to both
the detalled structure of organizations and the
functioning of its individual parts.

In the earlier paper we suggest that management by
exception and management by priority can be modeled by
the rigorously defined concepts internal homogeneity and
forcibility respectively. We also mention that the 1dea
of control by consensus or aggregation of information can
be conveniently interpreted using the notion of a thresh-
old. We now develop this idea. "Consensus', when there
can be more or less of it, implies the existence of a
metric on which the amount of evidence or disposition
"for" or "against" something can be scaled. Nelther
internal homogeneity nor forcibllity provide such a
measure., Internal homogeneity simply indicates the
behavicr of a net element 1n an aggregate sense, no
account being taken of the specific conditilons giving
rlse to the behavior. Forclbility reflects the efficacy
of elements' inputs individually, no account being taken
of possible Joint effects among inputs.

Control by consensus, in addltion, invokes the

ldea of a level, at or above which some course of



action 1s taken or some specific condition maintained.
That 1s, control by consensus can be interpreted as a
sufficiency condition.

In noting the importance of a metric and the
sufficlency condition in the concept "consensus", we
are naturally led to model it with threshold functions.
Such functions show both the aggregative scaling of
Input values and the sufficiency condition for constant
output. Conventional threshold functions [2], however,
often used to model nerve cells, typically interpret
"0" as "off" and "1" as "on", and provide both necessary
and sufficient conditions for setting output values. 1In
addition, conventional threshold functions typically set
the "on" condition for above threshold input configura-
tions. These restrictlons seem excessive for our pur-
poses. In a managerial environment it might be useful
to take no action given sufficient evidence, or to take
an action on finding a substantial lack of something (say,
productivity), in the input. It might also be useful to
be able to take the above threshold action, in certain
circumstances, at below threshold input values. The
notion of a threshold which we formalize ih the next
section, allows these possibilities. Hence our definition
extends the more familiar concept of a threshold [2] and
may appropriately be called an extended threshold. With
this understood we will shorten the terminology tc Just

threshold.



In passing we note that where all inputs "on"
achleve the same actlion as all inputs Yoff" we have a
map which arguably is not a threshold function. That
is, where the actlon to be taken or the condition to be
set is the same for both extremes of amount of informa-
tion, it can be objected that we are dealing with a
different concept. However, separating out such maps
does not change the conclusions we will reach; nor do
the separated maps themselves behave differently in the
large with respect to internal homogeneity and forci-
bility. For these reasons, and to maintain greater
generality, we will not complicate the definition of
extended threshold to effect their removal.

In the next section we characterize extended thresh-
old rigorously, and develop some counting relationships
for it. Following that section we interpret extended
threshold together wlth internal homogeneity and forci-
bllity in managerlal terms. We conclude with more
general comments on the interrelationship between systems

theory and organizational theory.

2. Definitions and Notatlon and some Preliminary Results

We wlsh formally to define the notion of a mapplng
on k inputs which has (extended) threshold £(1 < £ < k).
Speaking casually, We may say that a mapping on k inputs
has threshold £ if whenever { or more inputs take on a

specified value the mapping takes on a specified value.



We call the resultant mapping or output value the

threshold state associated with that input value. The

specified input value may be "0" or "1" and may be
coupled with a threshold state of "0" or "1". 1In this
definition £ is the minimum number of inputs for which
the statement 1s true since if the statement holds at
£ it would obviously hold at £+1,£+2,...,k.

The difficulty associated with such an informal
definltlion may be revealed by attemptlng to answer the
following illustratlive question. Can the system ever
be "on" if fewer than £ inputs are "on"? If the answer
is no we shall refer to £ as an absolute threshold
although it is not clear whether £ or k-£ should be
called the threshold since k-£ inputs "off" imply the
system 1s "off". If the answer ls yes we shall refer

to £ only as a threshold (for the number of "on" inputs).
Every mapping must have a threshold (at the largest it
would be k) but only a subset of mappings have an
absolute threshold. Because our extended conception of
a threshold allows either "off" or "on" 1nputé to turn
an element again either "off" or "on" how do we assign

a threshold value, £ to a mapping? We need to consider
for a mapping m, a threshold for the number of "off" or
"0" inputs which we denote by Lo(m) and similarly a

threshold for the number of on or "1" inputs which we

denote by Ll(m). We then define £(m) = min(to(m), Ll(m)).



In light of our extended definltion the minimum of these
two numbers 1is clearly the more significant value. In
considering absolute thresholds we quiékly discover that
if Lo is nan absolute threshold so is Ll and that

20 + Ll = k+l., We will prove shortly that for any
mapping m, £D(m) + ﬂl(m) > k+l. Table 1 attempts to
clarify the definitions and notations. For mapping my
we have £0(ml) = 4, £l(ml) = 3 and &(ml) = 3, For map-
ping m, we have £O(m2) = 2, £l(m2) = 4 and ﬂ(m2) = 2,
For mapping my we have £o(m3) = 2, ﬂl(m3) = 3 with both
ﬁo and Ll absclute thresholds and t(m3) = 2, Lastly for
mapping m) we have a situation where the notion of a
threshold has little significance (as noted in the
introduction) i.e., £_(m,) = £y (m) = £(m) = 4. The
notion of a threshold for the two trivial or constant
mappings 1s not meaningful. For convenlence we define

£ = 0 for both and do not consider them further in this
discussion.

A brief examination of Table 1 reveals that the
lexlcographic ordering for a mapping is not at all
convenlient for establishing thresholds. A better
arrangement would be to order the input rows monotoni-
cally by the number of "0"'s (hence by the number of
"1"'s.) To obtailn ﬂo and £1 from this "monotonic”
ordering is quite simple. Suppose for example the

input rows are arranged by increasing number of "0"'s,




If we scan up the mapping value column in this table for
the first change of wvalue ("0" to "1" or "1™ to "O") and
it occurs for a row having J input "0"'s then 20 = j+1.
If we scan down the mapping'value column for the changes
and it occurs for a row having j' input "0"'s (hence
k-=j' input "1"'s) then ﬂl = k=j*'+1.

We may Ilmmedlately notice that since we are con-
sidering only nontrivial maps we must have jJ'<J+1l, 1.e.,
k-£,+1 < £ or L+, > k+l. As Lemma 1 we state and
formally prove a slightly broader result.
Lemma 1l: For any nontrivial mapping m, lo(m)+£l(m) > k+l
with equality 1i.f.f. Lo (and hence ﬂl) is an absolute
threshold.
Pf.: If for m, Ko(m) = J (then all the input rows having
J or more "0"'s will be forced to a common mapping value.
The remaining rows have at most Jj-1 "O"'s hence at least
k=-J+1 "1"'s. Among rows having j-1 "0"'s there must be
at least one row with mapping value different from the
common mapplng value for all input rows with J or more
"Q"ts, Hence Kl(m) > k-j+1 and thus Lo(m) + Ll(m) > k+l.
Finally, £l(m) = k-j+1 (1.e., ﬂo(m) + Ll(m) = k+l) 1.f.f.
all rows with j-1 or fewer "0"'s have a common mapping
value. This mapping clearly has Lo(m) = j and Ll(m)
= k-J+1 as absolute thresholds. [

We note that if Z(m) = 1 then £ is lmmediately an

absolute threshold. Mapplngs having threshold £O=l and



Xq X3 }L2 Xl ml ma m3 m“
1 1 L 1 i} 1 1 0
0 1 1 1 4 0 1 1
1 0 i 1 ik 1 1 0
0 ¢ 1 i 0 0 0 1
1l 1 0 1 1 1 1 1
0 1 0 1 0 0 0 0
1 0 0 1 0 0 G 1
0 ‘ 0 0 1 1 0 0 0
1 i 1 0 ik 1 1 1
0 1 1 0 0 0 0 0
1 0 1 0 0 0 0 1
0 0 1 0 1 0 0 0
1 1 0 0 1 0 0 0
0 1 0 0 0 0 0 0
1 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0

Table 1: Illustrative Mapplngs on Four Inputs

corresponding threshold state 1 have been defined as
noncontractible by Rosén'[6]. We thus willl speak more
generally of mappingé with £=1 as being extended
noncontractible.

We now attempt t¢ enumerate the number of mappings

having a particular threshold £. If £ is an absolute



threshold the counting is simple. Given £o and hence

£l = k+1--£o there will be two mappings having this particular
Lo and Kl——the mapping having threshold state "0O" on the

"0" inputs, threshold state "1" on the "1" inputs and

vice versa. Since ﬁo runs from 1 to k the total number

of mappings having an absolute threshold ‘is 2k. The

number having absolute threshold £ is 4 if lo#ll and 2

k+l
-

if £o=£l. Note that £0=£l implies k is odd and £ =
Only for this £ may the number of maps having absolute
threshold be 2.

More generally let B(k,£) be the number of mappings
on k with threshold £ (including those with absolute
threshold £). In computing B(k,£) it will be convenient
if we first calculate a(k,j,j') which is the number of
mappings on k inputs with Lo = J and £l = j'. Note that
by Lemma 1, j+]}' must be at least k+l. We have the
following theorem.

Theorem 1:

(1) a(k,j,j')

2 if j+4] '=k+1

(11) a(k,i,i") 2(Jfl)+2-6 1f 4] ' =k+2

Jj-2

GYo) o GED D)
(111) o(k,j,j') = 4(2 4'""L _1y(2 -1 1)pi=k-d"+2
if j+j'>k+2.
Pf.: Given J and j' fixes a common mapping value, say

a, for all rows with j or more "0"'s and a common



mapping value, say b, for all rows with k-j' or fewer
"0"'s. We must examine the posslbilities for the remain-
ing rows involving more than k-j' "0"'s but fewer than
J "o"'s., (i) Suppose J+j'"=k+l. Then k-J'=j-1 and there
are no rows unaccounted for. If a=0 then b=l and vice
versa, hence a(k,j,j') = 2.

(1i) Suppose J+J'=k+2. Then k-j'=j~2 and thus only
rows with J-1 "0"'s must be considered. There are

(351) such rows. If a=b=0 at least one of these rows

must have mapping value 1. This may be dcone in 2(351)—1
ways. If a=b=l at least one of these rows must have

mapping value 0 which again may be done in
( k
2 J-1 -1 ways. If a=l and b=0 then at least one row must

have mapping value "O" and at least one row must have

mapping value "1". This may be accomplished in
( k
2 97172 ways. Similarly this is so for a=0 and b=l.

Combining these possibilities we have
k k

alk,j,Jj') = 2(2 -1)+2(2 -2) which after
simplification yields (ii).

© (441) If J+j'>k+2 then k-j'<j-2. At least one row
having j-1 "0"'s must have mapping value l-a and at
least one row having k-j '+l "0"'s (k-j'+1l<j-1) must have
mapping value 1-b. Rows involving more than k-j'+l but

fewer than j-1 "0"'s may be selected arbitrarily. Since

a and b may each be "0" or "1" this allows 4 initial



cholces. Combining these possibilities yields (iii).
For any mapping m on k Inputs wjith £O(m) < Zl(m)
there 1s a symmetrically equlvalent mapping (in terms of

thresholds) m' given by

m'(xl,xg,...,xk) = m(laxl,luxz,...,l—xk)g

It 1s apparent that m' arises in the monotonic ordering
of m by simply inverting the mapping value column and
hence clearly ﬁl(m') = Zo(m) < Kl(m) = Ko(m'). This
symmetry implies a(k,j,J') = a(k,j',J) and thus finally

enables us to calculate B(k,£).

k
Theorem 2: B(k,£) = 2 ! o(k,2,£') + a(k,£,£) where
L'=0+1
alk,£,£') = 0 if L+£'<k+1l.

Pf.: The proof 1s contained in the above discussion.

3. Interrelationships Between Thresholds, Forcibility

and Internal Homogeneity

The notilions of internal homogenelty and forcibility
have been discussed in previous articles. Walker and
Ashby [8] examine internal homogeneity and its effect on
system behavior while Kauffman in a series of articles,
most -notably [4], [5] has developed the concept of
forcibility. Forclbility appears to be a very strong
conceptualization with respect to determining system

behavior.

10



To recall our earlier definitions (Part 1), internal
homogenelty, denoted henceforth by I is the larger of
the number of "0" entries and the number of "1" entries
in the table of values of a mapplng, l.e.,

I = max(#0's, #1's). Hence 2571 < 1 < 2,

A mapping is forcible on a given input when a glven
state of the input "forces" the output of the mapping to
a single value regardless of the values of the other
inputs. This given state is called the forcing state.
If an input 1s lorcing on both states then the mapping
is either constant (trivial) or has half "1"'s and half
"0"'s. In the former case all inputs are forcing on both
states while in the latter case the mapping must be
forcing only on the one input. Since forcibility with
only cone input is trivial we restrict attention to the
case where the number of inputs k > 2. The forced value
of an element is that value to which it 1is forcible.

If an element is forcible on more than one input
line, itg foreced value iz identical for all the inputs
on which it is forcible. We denote the number of
foreing inputs by F.

Enumeration of Boolean transformations by internal
homogenelty and forcibility is discussed in Part I. We
now turn to the extenslon of these enumerations to
include thresholds.

Given any mapping m(i) on k inputs conslder the

mappings m' = m(1-x) (introduced in the previous section),
v oA

1l



m = l~m(£) and m' - l-m(%—{). It is easy to verify that
four mappings m, m', m, and m' are equivalent with regard
to internal homogeneity forcibility and thresholds. It

is possible that this equivalence class may consist of
just two elements, i.e., m=m' or m = m' (obviously m can't
equal m). It is apparent that if I 1s odd four distinct
mappings must arise and that 1f m = m' then I = 2571, 1t
i1s a complicated enumeration to establish the exact
number of classes, C(k), generated by such equivalence

classes. However simple upper and lower bounds are

readily avallable from the followlng theorem.

2 2k--l

= 1
LI N (1)<C(k)<s I N (2m)

Theorem 2: %
k=1 k-2

m=2

Nk(2m+l)

where Nk(i) is the number of mappings on k inputs with

I=1 »
Sk
Pf.: It is easy to see that Nk(i) = 2(i ) for
Sk
2"t <1 < 2¥ and that N (2¥M) = (). If I 1s odd,
k-1
>

say 2m+l, the number of equivalence classes generated is

thus %Nk(2m+l). If I 1s even, say 2m, the number of

12



classes generated is at least %Nk(Em) and at most
%Nk(Zm). Combining these results we have the
theorem. ||

Similar equivalence classes developed for the
speclal case of Boclean transformations with feedback
have been consldered in Walker and Aadryan [7] and
Gelfand and Walker [3]. They show that if k=3, 88
equivalence classes arlse. Theorem 2 provides bounds
of 64 and 96 for this case.

When k is large surely more than one eguivalence
class may have the same values for I, F and £. Even
when k=2 these three properties do not uniquely deter-
mine equivalence classes, as the example in Table 2

indicates.

Xy X my M,
1 L 1l i
0 1 1 0
1 0 0 i
0 0 0 0

Table 2: Two mappings in different equivalence
classes with I=2, F=1 and 4=2.

This example and discussion indicates that the
three properties are clearly interrelated. Part I
expanded upon the strong relationship between internal

homogeneity and forclibllity; essentially, larger F must

13



be accompanlied by larger I. We shall eventually see
that £ is weakly related to I and inversely related
to F.

Let us first examine internal homogenelty and
threshold. If for a mapping m on k inputs, £(m)=1 then
clearly I=2k—1 (and in fact F=k). Conversely if I=2k—1

1t 1s obvlous that £ +£, < k+2 and thus 1 < £ < ko

2
= k/2+1. More precisely of the 2k+1 mappings with
I=2k—l how many have threshold £? The exact answer

depends on whether k is odd or even. If k is odd,

1<2< E%l + 1 and the number is 4(£§l). If k is even,
k : k k
1 < £ < =+l and number 1is 4( ) if 1 < £ < = and
— - 2 L-1 — - 2
k _k
2(k/2) at £ = 5 + 1.

Let us now generally enumerate 1(k,i,£), the number
of mappings on k inputs having linternal homogeneity i
and threshold £. It will be convenient as in Theorem 1
to calculate I(k,i,lo,ﬁl) first. Also for convenience
let
¢ = max( _g (5, _% (), d = ming _% (5, : ().

j—ﬂo j—ﬂl j=L £

Recall alsc a and b as defined in Theorem 1.

We flirst note the following.
Lemma 2: (1) If a=b then T(k,1,£0,£1)=0 if i<c+d.

(11) If a#b then T(k,i,£0,£1)=0 if i<c or

14



Pf.: Obvious from definitions.

We are now ready to calculate T{kaig£ﬁg£l)o Let
T(k,1,j,Jj') be the number of mappings on k inputs with
I=3, £O§j and £1§J', If T is obtained T may be computed

from T via a second order difference, i.e.,

2
T = A (7).
zo,zl

More specifically thils notatlon means
T(k,i,&o,ﬂl) = T(ksiyﬁcskl) - T(k,i,&owl,il)
- T(k,i,£09£lml) + T(k,i,ﬂo-lal -1).

Theorem 3 enables us to compute T(k,i,Lo,ﬁl).

2K_(c+d) 2K_(c+d)
Theorem 3: Let e, = ( ) c, = ( Y
K
2 =31 i
oK (e+d) oK (c+d)
ey = ( ), and ey = ( ) and define
i-c i-a

b, = r &
(a) 2 0 if a>b. Then T(k,i,lo,il) = 2(el+e2+e3+eu)

k-1 k k-1

if 27 T<ik2” = 2(el+e3) if i=2 .

Pf.: Without loss of generality suppose Zozﬁl. Then

in the monotonic ordering (by number of "0"'s) at least



the last ¢ input rows have map value fixed at a and at
least the first c rows have map value fixed at b 1in order
to insure at most LO and Ll respectively.

Suppose that 1 is actuzlly number of "1"'s in the
table of mapplng values. For the remaining 2k—(c+d)

rows, e, counts the number of ways we may insure at most

1
£O and ll with a=b=1, e, indicates how many ways we may
do this with a=b=0, e3 indlcates how many ways with a=l,
b=0 and ey with a=0 and b=1l.

Since i1 may be the number of "0"'s in the table of
values we must multiply each ey by 2. In the case that

i=21{—1

we have e,%€5, e3=eu and hence the expression for
T 1is halved to avoid double counting. [

Lastly we may obtain t(k,i,2).
k

Theorem 4: 1(k,1,£) = 2 2 t(k,i,2,2")+t(k,1,£.,L").
L7=£+1

Pf.: It 1s obvious by symmetry considerations that
T(k,1,£,8') = 1(k,1,£',4).

Our next objective 1s to examline forcibillity and
threshold. We have already observed that if for a
mapping m, £(m) = 1 then m 1s forcing on all inputs.
Ir e, l<£§[£%£] ([x] denotes the greatest integer in
x) 1s an absolute threshold consider any input, say the
ith. For any row with x1=l and fewer than & 1nputs
equal to "1" the mapping value will differ from that of

a row with at least £ inputs equal to "1". A similar

16



argument holds when ximo 80 no forelng inputs are
possible.

The Jist of the preceeding paragraph may be stated
as a lemma.

Lemma 3: The intersection of the set of forcible mappings
and the set of mappings with an absclute threshold is

the set of extended noncontractible mappings.

Pf.: The proof 1is contained in the above discussicn.

We now examline the more general sltuation. We show
first that for any mapping having forcing inputs both
input values must have the same threshold state or
max(ﬁo,ll)zk.

Theorem 5: Consider any mapping m on k inputs with
differing threshold states and with £ (m) = j < k and
ﬂl(m) = j' < k. Then m has no forcing inputs.

Pf.: We show that the first input can not be forcing.
The proof reveals that the cholce of input is arbitrary
and thus that the theorem follows. Consider the row
with xl=l and xiﬁo9 i=2,...,k and the row with xi=l,
i=l,...,k=~1l and xkﬂﬂa Since both j and J' are less than
k we must have m(1,0,0,...,0) # m(1,1,1,...,1,0).
Similarly m(0,1.1,...,1}) # m(0,0,0,...,0,1) and thus the
first input can not be forcing. [ |

A partial converse to thls result is available if
we consider mappings having exactly [ forcing inputs
such that each forecing Input has the same forcing state.

For such a mapping the threshold can not exceed k+1-f.

17



Theorem 6: Suppose m 1s a mapping on k inputs which is
forcing on exactly £ of them and each forcing input has
the same forcing state. Then £(m) < k+1-f.
Pf.: Without loss of generality we may assume that the
first f inputs are forcing, that the forcing state is
"1" and that the forced value is "1". If we examine any
row having k+l-f or more "1"'s at least one of them must
be assoclated with one of the first f inputs and thus
m=1. Hence £;(m) < k+l-f and therefore L(m) < k+1-f. |
We note two obvious corrollariles.
Corollary 1: If f' of the f forcing inputs have forcing

state "1" and f-f' having forcing state "0" then
£(m) < k+l-max(f',f=f').

Corollary 2: If m is forecing on exactly k-1l inputs and
each foreclng 1lnput has the same forcing state, then
£(m) = 2.

Table 3 1llustrates the need for all forcing inputs

to have the same forcing state. Both mappings m, and

1

my have inputs 1 and 2 as forcing. However my satisfiles
the conditions of Theorem 6 (and Corcllary 2) and has
ﬁ(ml)=2. Mapping m, does not and has £(m2)=3 (in

agreement with Corollary 1).

18



X3 *2 X1 My "o
1 1 1 1 1
0 1 1 1 1
1 0 1 1 1
0 0 1 1 1
1 1 0 1 0
0 1 0 1 0
1 0 0 0 1
0 0 0 0 1

Table 3: An Jllustration of Theorem 6

We next turn to the calculation of o(k,f,£), the
number of mappings on k inputs with exactly { forcing
inputs and threshold £. The expression we develop is
extremely awkward to calculate and will be presented via
a lemma and two theorems. The reasons for the complexity
were touched upon In the discusslon surrounding the
previous thecorem, i.e., forcing inputs need not have the
same forcing state. As a result we must calculate
p(k,ﬂo,ﬁl,r,s), the number of maps on k inputs with
thresholds £0,£1 respectively and r inputs having forcing
‘gtate "1", s inputs having forcing state "Q".

We first note the following lemma.

Lemma 4: p(k,ﬁo,ll,r,s) = 0 unless both r < ﬁo and

s < L.

19



Pf.: Using the same argument as in Theorem 6 and
Corollary 1 we see that £ <k+l-s, £,<k+l-r. Hence
s<k+l-£_, r<kt+l-£,. If £;<s then £,<k+1-£ , 1.e.,
£1+£O<k+1 which is impossible. Similarly for £O<r. a
Lemma 3 resolvee the calculation of p when
£0+£l=k+1, i.e., only £=1 is possible and all inputs
force. Thus p(k,1l,k,k,0) = p(k,k,1,0,k) = 2. Further-

more since

ok, ,£.) = z p(k,2 ,&,,r,s)
C ol s<k+1-L, S

r5k+1-£l

we may calculate p(k,ﬂo,il,0,0) by subtraction if we have
obtained p(k,lo,tl,r,s) for any r, s with max(r,s)>1l.

As we shall see, 1t 1s most convenient to first
calculate R'(k,ﬂo,ﬂl,r,s) which is the number of mappings
on k 1nputs having thresholds Zo and £, with at least the
first r inputs having forcing state "1" and at least the
next s inputs having forcing state "0". Lemma 5 calcu-
lates R', Theorem 7 shows how R' may be adjusted to yleld
p and finally Theorem 8 obtains o from p.

Lemma 5: Case (i) r>l, s>1.
k- (r+s)
(£O~P-1 )

If £ +2,=k+2, R'(k,£ L ,r,8) = 2(2 =10
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If £ +2,>k+2, R (K, &y ,T,8) =

ﬁ0~rm2
i~ (P 48) K= (1ha) L (5)
(¢ —r-1") (g -5-1")  mkew=ty#2
2(2 ~1)(2 -1)2

Case (ii) r>1, s=0.
If £ =k, £ +L.=k+2, R'(k,k,2,r,0) = 25 T¥2 ¢
o"" E) o l"' 3 2Ky Iy U

If £ =k, £ +& >k+2, R'(k,k,£,,r,0) =

Kera-2 X
(ﬂ _.1) 13}(“1*"461“'2
K1 1
2™ r=1)(2 ~1)2 5

ifr £0<k, same expressions as in case (i).

Case (iii) s>1, r=0.

: k-s+
Ir o=k, £ +L,=k+2, R'(k,2,k,0,8) = 2°7%%% 6, 1Ir £ =k,
£ L k42, R' (kL ,k,0,8) =
=2
0

z (

k>
k-s ol
(ioml) i=k £1+2

i
K-S

{2 -1)(2 -1)2 .

1r £0<k, same expressions as in case (i).

Pf.: The proof of this lemma 1is guite similar to that

of Theorem 1. We only prove cases (1) and (ii1) since

case (1ii1) is symmetrically equivalent to case (ii).
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(1) r>1, s>1 implies in the lexicographlc order,
the first 2k~2k"r rows (i.e., those which have a "1" for
any of the first r lnputs) are determined at, say a.

k-r-s

k=r_, rows must as well be determined

Also the last 2
at this a (1.e., the forced value is unique and these are
the remaining rows having a "0" in at least one of the
next s inputs). Note that since the first and last rows
have map value a, both input values must have the same
threshold state, a. Congider the undetermined rows. All
have x, = Xg = oo = X, = 0, x = X = ve. o= X,

1 r+l r+2
= 1, If Lo = r or Zl = 5 all of these rows must also

r+s

be determined to have map value a and thus the trivial
map results. Hence we take r < Zo’ s < ﬂle To have
threshold to and Kl, for the remaining k-(r+s) inputs
whenever Ko—r or more are "O" or whenever £l~s or more
are "1" the map value must again be a. To insure exactly
ﬂo’ 21 we must look among these k-(r+s) inputs at rows
with exactly £O~r—l of them at "0" and at rows with

exactly €l~s~1 of them at "1" (i.e., k=(r+s) - (El-s—l)

4

kmr—£l+l of them at "0").
if £o+£l = k+2 then k—r«£l+l = io—r—l and for at

k- (r+s)
least one of these ( ) rows the map value must be
£o—r-l

l-a. Since a may be chosen in two ways the expression

for £O+£1 = k+2 follows.
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ir £0+£ >k+2 then kmrw£l¢l<£0mrm1 and the second

1
part of (i) follows as in {1ii) of Theorem 1 except that
agaln a can be chosen in two ways and b must be l-a.

(11) r>1, s=0 implies again that the first 2X-2%7T
rows are determined at say a. However with s=0 the map
value for the last row is not fixed. From Thecrem 5 with
l<r<t | (Lemma ), 1f the threshold states differ £, must
equal k and the last row will have map value l-a. Hence
again as in Theorem 1, if £0ﬁk we may have a#b but if
£0<k we must have a=b. For the former the expressions
mimic cases (ii) and (iii) of Theorem 1 while for the
latter the same argument as in case (i) of this theorem
is appropriate with s=0. Hence the expressions in (ii)
follow and we are done. [

Note that the completion of the rows in cases (1)
and (ii) in order to fix 20 and Ll may result in more
than Just the first r_inputs being forcing with forcing
state "1 and more than Just the next s inputs being
forcing with forecing state "0V,

Thecrem 7:

k!

J+3"
risi (k-(r+s))! L (1)

023,3°
J4J 'k~ (r+s)

p(kj‘eca'zl’r!s)z

(k- (r+s))!
JUIT (k= (r+s)=J-J*)!

R'(k,zo,ﬂl,r+j,s+3').



Pf.: The summation adjusts R' to the number of ways in
which exactly the first r inputs have forclng state "1"
and exactly the next s inputs have forcing state "0OY.
The form may be established from a straightforward
counting argument using symmetry in the selection of the
additlonal J+j' forcing inputs. The detalls are omitted.
The factorilial coefficlent allows the adjustment from the
first r and next s Inputs to an arbitrary cholce of r and
s from the total of k inputs. [

We finally have

Theorem 8:

e

o(k,f,£)=2 I I p(k,&,8',r,s)+ I p(k,2,2',r,s).
L'=L+]1 r+s=f r+s=f
Pf.: In order to have exactly f forcing inputs, r+s must

equal . Since it 1s apparent that pX p(k,to,Ll,r,s)
r+s=f

U

pX p(k,ﬁl,lo,r,s) the conclusion follows. [
r+s=f

Considering the difficulties involved 1in achieving
Theorems 4 and 8 a theoretical enumeration of maps by £
and I and F appears overwhelming. Instead we offer
Table 4 which presents such an explicit enumeration for
k=2, 3 and 4. The theoretical results for £ and I
(Theorem 4) may be verified by summing the tables over
F. Similarly for £ and F (Theorem 8) by summing over

I. The tables particularly at k=3 and 4 reveal the
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weak relation between £ and I and the rather strong
inverse relation between £ and F.

In faet for general k the relationship between £
and I must continue to be weak. We recall, using the
monotonic ordering for mappings, that only an upper and
lower set of input rows are determined. The remaining
middle rows are all free to assume elther map value.
Hence 1f k 1s large and £ is not too small I is only
weakly controlled by the specification of £. In the
situation where £ is very small or is an absolute
threshold this will not be the case but such mappings
are sparse in the overall collection of possible mappings.
For general k the strong inverse relationship between £
and F also persists by reference to Theorem 6 and
Corollary 1. More preclsely, decreasing threshcld has
the effect of increasing the proportion of maps in the
glven threshold class that have one or moere forcivle in-
puts. For example, with k=4 maps, that proportion is
0.03 at £=4, 0.20 at £=3, 0.93 at £=2, and 1.0 at £=1
and £=0. From Table 4 it can also be seen that within
threshold classes the positive relationship between
internal homogenelty and forcibility noted in part I
still obtains. This 18 a nontrivial finding in that
contrary outcomes are concelvable, particularly for
£=2, That is, extended threshold could vary the way 1in
which internal homogeneity and forcibillty are related.

We find that 1t does not. Thils suggests the exlstence
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of some mechanism common to the three measures. We

return to this point in Section 5.

k=2
=2 N 2 3y =1 N 2 3
ol 2 - - 2 ol - -
3 y - - 4 1 - -
2 - 4 - y 2 - 4
6 4 -l 10 -y
=0 N 2 3y
ol - - -] -
1 - - - -
2| - - 2 2
- - 2 2
k=3
=3 Ny 5 g 7 3
0 62 60 8 - = 130
1 6 36 12 - - 54
2 - - 12 - 4 12
3 - - TS :
68 96 32 - - 196
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0 b - w o= 6
1 - 12 12 - | 24
2 ® = Ao = & ab
3 -~ - - 12 -t 12
2 16 24 12 | 54
=1 Ny 5 5 7 8
0o = = 5 & . 2 =
1 5 = - . 5
2 - - - I -
A e
_ 1
£=0 f Yy 5 6 7 8
0 - - -— - i e
1 - - - - - -
2 @ - % = -
3 = == 3 >
- - - a2 2
k=4
e= NE 3 9 10 11 12 13 14 15 16
0§ 12242 21288 13814 6340 1830 260 10 - -
1 8 112 336 560 496 192 16 - -
2 - - - - 24 48 24 - -
3 - = 2 - S
I - - - - . e e = -
12250 21400 14150 6900 2350 500 50 - -
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=3 N 8 9 10 11 12 13 14 15 16

0 620 1464 1754 1496 734 156 6 - -| 6230
1 - 16 112 336 512 304 48 - -| 1328
2 - - = 774 T2y 120 48 -~ | 192
3 = = - - - - 48 - 48
1 - - R e T T
620 1480 1866 1832 1270 580150 12 o0l 7810
e=2 N 8 9 10 11 12 13 14 15 16
0 . 3 - 44 - - o - 8
1 - - - - 16 16 - - - 32
> - - - - - ooy - - &g
3 - - - - - 216 - - 16
1 - - - - - - 16 -| 16
- - - 4 20 40 40 16 - 120
=1 N 8 9 10 11 12 13 14 15 16
0 = - ST -
1 = - S s .
2 = = - = -
3 - - R T = T = T = T = = =
} - - - - - - -y - !
- - - - - - - 4 - 4
£=0 N\ 8 9 10 11 12 13 14 15 16
O — s - 0 e em wm wa ww == 5
1 - - - - - - - = - -
5 - - - - - . - - - -
3 - — - = = = = - =1 -
3 - - - - - - - - 2 2
= = - - 52 = & - 2 2

Table 4. An enumeration of mappings by number of forcing
inputs (f), internal homogeneity (i), and thresh-
old (£), for number of inputs k=1,2,3,4.
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4, Organizational Implications and Interpretations

We now examine how the relatlionships developed in
the preceding section might be used in practice to defend
the complex organization agalnst behavioral abnormality.
The manager oy organizational designer intending to use
these results, as we have said, would already have
determined intervention in the form of detailled structural
and functional specification to be inappropriate. We
further assume that the he or she has decided not to
manage by manipulating input span (k). Rather, we
emphasize exception, priority, and consensus over input
span management because we assume that in practice many
control nets will have to retain high k values.

The general way in which the inverse relationship
between extended threshold and foreibility can be applied
is now clear. Interpreting extended threshold 1n the
manner suggested in ocur introduction as the level of
information or consensus at which action (or lack there-
of) is to be taken, and noting once again that increased
densities of forcible mappings work generally to
regularlze system behaviocr, the manager has the option
of seeking to decrease the consensus level in the
appropriate organizational cbntrol net. To do so the
manager might address those in charge of net elements:
"Given your sources of control information as they are,

try to arrange your procedures so that appropriate
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actlon will be taken at the lowest possible amount of
relevant information," or more briefly, "Be decisive,
but not impetuous." Note that the latter formulation
has a clear attitudinal, or dispositional component.
We return to this point below.

That reducing consensus levels in a complex organi-
zatlon should serve to keep 1its behavior below certailn
pathological extremes may be mildly paradoxical. Some
resolution of the paradox 1s provided by recalling that
high levels of (extended) threshold do not imply con-
sistency of response, nor, in particular, do they imply
complete lack of response, at sub-threshold input.
Furthermore, the manager will want it understood that
consensus levels should bear a truly appropriate relation
to the task at hand. They should not be set whimslcally.

What might the Joint relationship between the three
strategles say about organizational theory and management?
First, it 1is worth reflecting on the fact that any glven
mappling necessarlly has definite levels of internal homo-
genelity, forcibility, and extended threshold. If our
interpretations and point of view are at all generally
valid, the organizational theory implication can be drawn
that any organizational unit with a fixed functilonal
regime operates at definite levels of management by
exception, by priority, and by consensus. Since it is

reasonable to think that these managerlal styles may
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have psychological impact on the unit’s work force,
the further implication is that organizational micro-
climate and unlt socioclogy may be influenced by the
unit's functional reglime.

If mappings {(functional regimes) do affect worker
psycﬁelogy, this fact becomes a design consideration.
It then becomes important to ask how free the organiza-
tion designer is to mutually vary the three strategies.
It can be seen from Table 4 that the three strategies
are correlated, but the correlation 1s much less than
perfect. Therefore it is possible to manlpulate the
density of forcible mappings, elther directly by acting
on values of management by priority, or indlrectly by
changing the Iintensity of either exception or consensus
management, while at the same time allowing for some
fine-tuning of, say, organizatlonal climate, by
modifying the intensity of the remaining strategy or
strategles.

An important datum for intervention design in our
scheme is given by Kauffman [5]. He states that if 60%
of the maps in a large, complex, high k net are forcible
on one or more inputs, then the net behaves essentially
as does the k=2 net. To 1illustrate the comblned use of
strategies, let us assume that k=U4, and an intervention
to decrease consensus has achieved £=3 in the net. If
no information is available as to what the existing

intensitlies of net I and F are, a reasonable estimate
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of the density of forcible maps is that provided by the
marginal distribution of F given £=3, in Table 4. That
is, the predicted density of forcible maps is 20%: lower
than the Kauffman criterion. If a second intervention
can raise the intensity of exception management to I>13,
while not raising the consensus level, the manager is
assured of at least 73% forcible maps in the control
net.* That is, for £=2, I=13 there are 73% of the maps
forcible on at least one input, and for £=2, I>13 the
densities increase. The organization 1s now controlled
to the extent that useful behaviors are a practical
possibility. The manager 1s still free to act directly
to increase management by priority, or perhaps cautiously
to decrease its mean value, so as to modify the organi-
zatlonal climate or to accomplish other ailms.

The illustration above makes use of the fact that
the three strategles are lmperfectly correlated. The
Joint correlation, however, is falrly high, and this has
its own interesting implication for organizational

psychology: Whatever the distinct psychological impact

¥More correctly, he is assured of 73% forcible maps
in the population from which the net maps are assumed to
be a simple random sample. For large nets the popula-
tion figure 1s a reasonable prediction as to what will

prevail in a given net.
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of each stratepgy may be, the behaviorally reasonable
complex crganlzation with arbitrary structure would
appear to provide its conbrol system workers only a
limited subset of all possibvle psychological
environments.

What might be the psychological and sociological
character of each strategy be? We speculate that
management by exception might impact largely on an
obsession--indifference dimension, management by
priority might affect status structure and hence
status-related behaviors, and management by consensus
might be associated with behavior on a boldness-timidity
or risk-taking continuum.

Under these interpretations, the tractable high
input span complex corganization would appear in two
basic forms. 1) Its control nets could be specifically
gstructured to provide tractable behavior. Such organi-
zatlions'! control units would be able to show a wide
variety of psychologlcal envircnments. In this case we
would expect net structure to be tightly controlled,
that is, such organizations would show the presumably
few easlily maintained organlzational forms that promote
foreibility, or they would Invest relatively heavily in
the maintenance of a priori organizational forms. Or,
2) 1ts control nets would not be specifically formed.
Here, we would expect to see both more variety in form

and less investment in structural form maintenance and
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at the same time less variety in control unlts’
psychological environmentg. The environments expected
in these circumstances would be such as to suit control
unit personnel who are largely intermediate on the
obsession-indifference scale in work habits, comfortable
with a modest amount of status structure in the work
environment, and who can be moderate risk takers.

The decislvely pathological complex organization
in our scheme has high input span control nets, little
capacity for organizational form maintenance, and shows
control net units in which no work related status
structures are found, or control unit personnel who are

typically work-cbsessive or low risk takers on the job.

5. System Theory and Ensemble Methods in Organizational

Theory
We now ask if the similarity in effect of our three

strategies may be explained by some mechanism common to
all three. Such an explanation is easily found. Referring
to thelr definitions, it can be seen that each of the
three strategles is scaled by reference to the extent of
sameness it provides in functionai output. Useful
systemic effects then, are achieved by appropriately
blocking information flow. Ashby has discussed the
importance of such control in general, calling functions
that achieve it "part-functions" [1, p. 66]. It is
worth emphasizing that providing tractable, stable
behavior by information blocking does not necessarily

result in a moribund organization. For the complex
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organization controlled by part-functionsg, the picture
which emerges, to paraphrase Kauffman (4], 1s that of a
system rich in part-functions, with extensive blocked
paths weaving through it, leaving pockets of informa-
tionally actlve elements functionally isolated from one
another. The part-functions and blocked paths would
provide the basic tractabllity of the organization,
Different organizaticnal products or cutceomes would
correspond to different patterns of activity, either
steady'state or c¢yellic, of the isolated, active
subsystems.

One of our alms in this series of papers is to
illustrate the purchase that can be obtained using
system theoretic ensemble methods to address the manage-
ment of complexity. The simple model proposed here for
complex organization control systems is almost surely
inadequate in many respects. However, a significant
guestion in any discipline is what are the properties
necessary to explain what is observed. Simple models
provide an especlally attractive testing ground for
examining this question. Qur examinatlon of thesae
simple models 1llustrates the fact that structure and
functlon do interact. That is, the effective control
structure in an organization 1s a dynamic entity which
varies over time, and which can be modified by

functional changes in contrcl elements. We have argued



that such functional change may be achileved in
recognizably different ways, different, that 1s, both as
to how the manager might achieve the changes, and as to
what psychological and soclological effects might be
expected from thelr use. We have argued that, in suit-
able circumstances, details of organizational control
structure might not be a cruclal consideration for the
organizational intervener or designer. Finally, we have
tried to show that simple models can provide rich

real-world interpretive and explanatory possibilities.
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